Cyclometallated complexes of palladium(II) with the diphosphines trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$, cis $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ and $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}$. The X-ray crystal structure of $\left[\left(\operatorname{Pd}\left[2,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right]\right]_{2}(\mu\right.$ $\left.\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right)(\mu-\mathrm{Cl})_{2}$]

Jose M. Vila, Miguel Gayoso and Alberto Fernandez
Department of Inorganic Chemistry, University of Santiago, Santiago de Compostela, E-15706 (Spain)

Neil A. Bailey and Harry Adams
Department of Chemistry, The University of Sheffield, Sheffield S3 7HF (UK)
(Received July 16, 1992)

Abstract

Treatment of $2,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}(\mathrm{a})$ or $2,3-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{H})=\mathrm{NCy}(\mathrm{b})(\mathrm{Cy}=$ cyclohexyl) with palladium(II) aceate gave the cyclometallated acetato-bridged complexes 1a and 1b. These were converted into the analogous halide-bridged complexes by reaction with NaX ($\mathbf{2 a}, \mathbf{2 b}, \mathbf{X}=\mathrm{Cl} ; \mathbf{3 a}, \mathbf{3 b}, \mathrm{X}=\mathrm{Br} ; \mathbf{4 a}, \mathbf{4 b}, \mathrm{X}=\mathrm{I}$). The halide-bridged dimers react: (\mathbf{a}) with trans- $\mathrm{Ph}_{2} \mathbf{P C H}=\mathrm{CHPPh}_{2}$ (trans-dppe) and $\left.\mathrm{Ph}_{2} \mathrm{P}^{\left(\mathrm{CH}_{2}\right)}\right)_{4} \mathrm{PPh}_{2}$ (dppb) in a dimer/diphosphine $1: 1$ molar ratio to give the dinuclear phosphine-bridged complexes $5 \mathbf{a - 7 a}, \mathbf{5 b - 7 b}$ (trans-dppe) and $\mathbf{8 a - 1 0 a}, \mathbf{8 b - 1 0 b}$ (dppb); and (b) with cis- $\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ (cis-dppe) or $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}(\mathrm{dppb})$, in a dimer/diphosphine $1: 2$ molar ratio, and $\mathrm{NH}_{4} \mathrm{PF}_{6}$, to give the mononuclear cyclometallated species 11a, 11b (cis-dppe), or 12a and 12b (dppb). The structure of 8 a is described. This is the first structurally characterised dinuclear palladium(II) complex with two cyclometallated moieties bounded through a diphosphine ligand. The crystals are monoclinic, space group $P 2_{1} / n$ with $a=1084.1(7), b=3067.7(28), c=1181.9(10) \mathrm{pm}, \beta=114.22(6)^{\circ}, U 3.585(5) \mathrm{nm}^{3}, Z=2, R=0.0731$ and $\boldsymbol{R}_{w}=0.0602$ for 3970 independent reflections.

1. Introduction

Cyclometallated complexes have been widely studied [1-4]. We have described the chemistry of cyclometallated compounds derived from ligands having one or two nitrogen-donor atoms, such as Schiff bases [5,6], phenylimidazoles [7], benzylidene hydrazones [8], and bis(N-benzylidene)-1,4-phenylenediamines [9]. The cyclometallated halide-bridged dimer complexes react with an extensive variety of molecular and anionic nucleophiles to give mononuclear or dinuclear species which may or may not be cyclometallated.

[^0]We have described the reactivity of cyclometallated palladium(II) dimer complexes with tertiary mono- and di-phosphines $[5,6,10,11]$. For dinuclear species and $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}(\mathrm{dppm})$ or $\mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}(\mathrm{vdpp})$, the small "bite" of the diphosphine ligand brings the metal atoms sufficiently close together to allow the metals also to be bonded by an acetate or by a halide, to give dinuclear $1: 1$ salts. When the "bite" of the diphosphine is increased, the diphosphine only should bridge the metals, to give molecular compounds with terminal metal-halogen bonds. This happens in the case of $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ [12]. X-Ray crystallographic data concerning these compounds is somewhat limited. To the best of our knowledge there is only one example for a small "bite" diphosphine [11]. In the present paper we report the first crystal structure of a cyclometallated dinuclear Schiff base complex where
two cyclometallated palladium(II) moieties are bonded through a large "bite" diphosphine, $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}$ (dppb). The use of trans- $\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ (transdppe) and cis $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ (cis-dppe) to give further dinuclear and mononuclear species is also described.

2. Results and discussion

2.1. Crystal structure of $8 a$

Suitable crystals of compound 8a were obtained by slowly evaporating a chloroform solution. The molecular structure, with atom labelling, is illustrated in Fig. 1. Final fractional coordinates are listed in Table 1 while bond lengths and angles with estimated standard deviations are listed in Table 2.

The molecule is a centrosymmetric binuclear complex, containing two, symmetry related, square-planar palladium(II) centres as expected for Pd^{2+}, at each of which there is bound a chlorine, a bidentate N - $(2,4-$ benzylidene) cyclohexylamine- C^{6}, N (C^{6} trans to chlorine), and finally a centrosymmetric 1,4-bis(diphenylphosphino)butane which bridges the two palladium centres. The $\mathrm{Pd}(1)-\mathrm{C}(13)$ bond length of $200.2(8) \mathrm{pm}$ is shorter than the sum of the covalent radii (131 and 77.1 pm for palladium and for carbon, respectively [13]). This shortening, which has been observed in analogous complexes $[6,9,14]$, is attributed to partial multiple bond character in the $\mathrm{Pd}-\mathrm{C}$ (phenyl) linkage. The $\operatorname{Pd}(1)-\mathrm{N}(1)$ length of $209.6(7) \mathrm{pm}$ is longer than

Fig. 1. Molecular structure and numbering scheme of compound 8a.
the single bond value of 201 pm calculated using the covalent radius of $\mathrm{N}\left(s p^{2}\right) 70 \mathrm{pm}$; palladium, 131 pm . It is also longer than the value found in other cyciometallated complexes, ca. 204 pm ; this reflects the trans-influence of the phosphine. The $\mathrm{C}=\mathrm{N}$ distance $\mathrm{N}(1)-\mathrm{C}(7)$ of $125.6(12) \mathrm{pm}$ is rather longer than the value of $123.7(3) \mathrm{pm}$ observed for a related free base [15]; this is characteristic of coordinated Schiff bases where the nitrogen atom is bonded to the metal atom [16], and has been observed by us earlier [6,9]. The $\operatorname{Pd}(1)-P(1)$ distance of $226.2(3) \mathrm{pm}$, is similar to that value found in a related cyclometallated complex [17], but is shorter than the sum of the single bond covalent radii for Pd and $P, 241$ pm [13]. The relative shortness of the bond

Scheme 1. I: NaX in aqueous acetone; ii: 1 equiv. of trans-dppe in acetone; iii: 1 equiv. of dppb in acetone; iv: 2 equiv. of cis-dppe or $\mathrm{dppb}+\mathrm{NH}_{4} \mathrm{PF}_{6}$ in acetone. $\mathbf{a}: \mathrm{R}=2,4-\mathrm{Me}_{2} ; \boldsymbol{b}: \mathbf{R}=2,3-(\mathrm{MeO})_{2}$.

TABLE 1. Non-hydrogen atom coordinates ($\times 10^{4}$) and isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 8 a

Atom ${ }^{\text {a }}$	\boldsymbol{x}	y	z	$U_{\text {eq }}{ }^{\text {b }}$
Pd(1)	2310(1)	1192(1)	4678(1)	27(1)*
Cl(1)	4676(2)	1300(1)	5216(2)	45(1)*
P (1)	2301(2)	685(1)	3286(2)	29(1)*
N(1)	2263(7)	1652(2)	5972(6)	33(3)*
C(1)	3357(8)	1962(3)	6686(7)	38(4)*
C(2)	3284(11)	2341(3)	5874(8)	71(5)*
C(3)	4489(13)	2646(4)	6529(11)	104(8)*
C(4)	4572(11)	2791(3)	7763(11)	86(6)*
C(5)	4592(11)	2408(4)	8557(10)	78(6)*
C(6)	3415(10)	2103(3)	7906(8)	66(5)*
C(7)	1149(7)	1656(3)	6064(7)	37(4)*
C(8)	$50(8)$	11382(3)	5259(8)	43(4)*
C(9)	- 1225(8)	1382(3)	5259(8)	43(4)
C(10)	-2225(8)	1141(3)	4386(8)	43(4)*
C(11)	-2015(8)	927(3)	$3460(8)$	43(4)
C(12)	-726(7)	934(3)	3458(7)	33(3)*
C(13)	351(7)	1149(3)	4356(7)	32(3)*
C(14)	1068(7)	246(2)	2874(7)	27(3)*
C(15)	947(8)	24(3)	3847(8)	38(4)*
C(16)	32(9)	-312(3)	2420(9)	58(5)*
C(17)	-781(10)	-427(3)	2420(9)	58(5)
C(18)	-669(10)	-212(3)	1444(9)	62(5)*
C(19)	254(8)	130(3)	1672(8)	44(4)*
C(20)	2023(8)	946(3)	1819(7)	33(3)*
C(21)	886(8)	1194(3)	1220(8)	49(4)*
C(22)	648(10)	1397(3)	137(9)	55(5)*
C(23)	1570(11)	1376(3)	-370(9)	55(5)*
C(24)	2726(10)	1145(3)	210(8)	51(4)*
C(25)	2957(9)	929(3)	1311(8)	47(4)*
C(26)	3876(8)	381(3)	3693(7)	32(4)*
C(27)	4311(8)	104(3)	4850(8)	39(4)*
C(28)	-3100(8)	665(4)	2519(9)	69(5)*
C(29)	-1500(9)	1627(4)	6243(9)	69(5)*
C(30)	4763(12)	2043(4)	3006(11)	81(6)*
C(31)	6104(12)	928(4)	8309(11)	97(7)*
$\mathrm{Cl}(2)$	5764(4)	2440(1)	4024(3)	111(2)*
$\mathrm{Cl}(4)$	3092(4)	2195(1)	2359(4)	125(2)*
$\mathrm{Cl}(3)$	5345(4)	1946(1)	1862(4)	133(3)*
$\mathrm{Cl}(5)$	6579(5)	1318(1)	9443(4)	162(3)*
Cl(6)	7485(4)	644(1)	8341(4)	142(3)*
$\mathrm{Cl}(7)$	4920(6)	590(2)	8418(5)	201(4)*

${ }^{\text {a }}$ Atoms $\mathrm{C}(30), \mathrm{Cl}(2)-\mathrm{Cl}(4)$, and $\mathrm{C}(31), \mathrm{Cl}(5)-\mathrm{Cl}(7)$ are from two chloroform molecules per asymmetric unit. ${ }^{\text {b }}$ For starred atoms: equivalent isotropic U defined as one third of the trace of the orthogonalised $U_{i j}$ tensor.
suggests that there is effective orbital overlap between the palladium and phosphorus atoms.

The $\mathrm{Pd}(1)-\mathrm{Cl}(1)$ bond length of $239.9(9) \mathrm{pm}$ is very close to that observed elsewhere (236.2(3) pm [18] and 238.6(7) pm [19]), but is significantly longer than the sum of the covalent radii (230 pm), consistent with the trans-influence of the C(phenyl) atom. The geometry around the palladium atom is planar (r.m.s. deviation of coordination plane 0.8 pm , from which the displacement of the palladium is only 0.6 pm), and the only noteworthy angular deviation is the reduced $\mathrm{N}(1)-$

Pd(1)-C(13) angle of $80.9(3)^{\circ}$ consequent upon chelation. This is reflected in the value of the $\mathrm{Pd}(1)-\mathrm{C}(13)-$ $\mathrm{C}(12)$ angle, $132.4(7)^{\circ}$. The sum of angles about the palladium atom is 360°. The skeleton of the cyclometallated ring $[\mathrm{Pd}(1)-\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)]$ is planar (r.m.s. deviation 2.2 pm), from which the palladium

TABLE 2. Bond lengths (pm) and angles $\left.\mathbf{(}^{\circ}\right)^{\text {a }}$ in compound 8a

$\overline{\mathrm{Pd}(1)-\mathrm{Cl}(1)}$	239.9(3)	$\mathbf{P d}(1)-\mathbf{P}(1)$	226.2(3)
$\mathrm{Pd}(1)-\mathrm{N}(1)$	209.6(7)	Pd(1)-C(13)	200.2(8)
$\mathrm{P}(1)-\mathrm{C}(14)$	181.7(8)	$\mathbf{P}(1)-\mathrm{C}(20)$	181.8(9)
$\mathrm{P}(1)-\mathrm{C}(26)$	182.9 (8)	$\mathrm{N}(1)-\mathrm{C}(1)$	148.3(10)
$\mathrm{N}(1)-\mathrm{C}(7)$	125.6(12)	C(1)-C(2)	148.8(13)
C(1)-C(6)	148.3(14)	$\mathrm{C}(2)-\mathrm{C}(3)$	153.5(16)
C(3)-C(4)	149.2(19)	C(4)-C(5)	149.9(16)
$\mathrm{C}(5)-\mathrm{C}(6)$	151.3(14)	C(7)-C(8)	144.3(10)
$\mathrm{C}(8)-\mathrm{C}(9)$	139.5(14)	$\mathrm{C}(8)-\mathrm{C}(13)$	141.8(13)
$\mathrm{C}(9)-\mathrm{C}(10)$	136.7(11)	$\mathrm{C}(9)-\mathrm{C}(29)$	151.3(16)
$\mathrm{C}(10)-\mathrm{C}(11)$	137.4(14)	$\mathrm{C}(11)-\mathrm{C}(12)$	139.8(13)
$\mathrm{C}(11)-\mathrm{C}(28)$	148.2(12)	$\mathrm{C}(12)-\mathrm{C}(13)$	138.1(9)
C(14)-C(15)	138.0(12)	$\mathrm{C}(14)-\mathrm{C}(19)$	137.7(10)
C(15)-C(16)	138.0(12)	$\mathrm{C}(16)-\mathrm{C}(17)$	137.9(12)
$\mathrm{C}(17)-\mathrm{C}(18)$	137.7(16)	$\mathrm{C}(18)-\mathrm{C}(19)$	139.7(14)
$\mathrm{C}(20)-\mathrm{C}(21)$	137.3(11)	$\mathrm{C}(20)-\mathrm{C}(25)$	137.4(15)
C(21)-C(22)	134.9(14)	$\mathrm{C}(22)-\mathrm{C}(23)$	136.1(18)
C(23)-C(24)	135.6(14)	$\mathrm{C}(24)-\mathrm{C}(25)$	138.8(13)
C(26)-C(27)	151.2(12)	$\mathrm{C}(27)-\mathrm{C}\left(27{ }^{\prime}\right)$	152.6(17)
$\mathrm{C}(30)-\mathrm{Cl}(2)$	174.2(11)	$\mathrm{C}(30)-\mathrm{Cl}(4)$	171.1(13)
$\mathrm{C}(30)-\mathrm{Cl}(3)$	173.6(16)	$\mathrm{C}(31)-\mathrm{Cl}(5)$	171.1(13)
$\mathrm{C}(31)-\mathrm{Cl}(6)$	171.8(15)	$\mathrm{C}(31)-\mathrm{Cl}(7)$	169.6(16)
$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	88.4(1)	$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)$	93.3(2)
$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)$	178.1(2)	$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{C}(13)$	174.2(2)
$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{C}(13)$	97.4(2)	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{C}(13)$	80.9(3)
$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{C}(14)$	119.2(3)	$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{C}(20)$	110.0(3)
$\mathrm{C}(14)-\mathrm{P}(1)-\mathrm{C}(20)$	104.7(3)	$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{C}(26)$	115.7(3)
$\mathrm{C}(14)-\mathrm{P}(1)-\mathrm{C}(26)$	101.3(4)	$\mathrm{C}(20)-\mathrm{P}(1)-\mathrm{C}(26)$	104.3(4)
$\mathrm{Pd}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	126.4(6)	$\mathrm{Pd}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$112.4(5)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	121.2(7)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	108.3(6)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	116.5(8)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$111.6(8)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	110.0(7)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	111.9(12)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	111.0(9)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$111.9(8)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	111.5(10)	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	119.4(8)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	123.1(8)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(13)$	114.7(8)
C(9)-C(8)-C(13)	122.2(7)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	118.7(9)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(29)$	121.1(7)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(29)$	120.2(9)
C(9)-C(10)-C(11)	121.4(9)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.1(7)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(28)$	121.2(9)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(28)$	119.6(9)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$122.4(8)$	$\mathrm{Pd}(1)-\mathrm{C}(13)-\mathrm{C}(8)$	111.8(5)
$\mathrm{Pd}(1)-\mathrm{C}(13)-\mathrm{C}(12)$	132.4(7)	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$115.9(8)$
$\mathrm{P}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	116.8(5)	$\mathrm{P}(1)-\mathrm{C}(14)-\mathrm{C}(19)$	124.0(7)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	119.3(7)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	121.0(7)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	119.5(10)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	120.3(9)
C(17)-C(18)-C(19)	120.0 (8)	$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	119.9(9)
$\mathrm{P}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	119.9(8)	$\mathrm{P}(1)-\mathrm{C}(20)-\mathrm{C}(25)$	122.5(6)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)$	117.5(8)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	121.8(10)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	120.5(9)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	119.7(10)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	119.8(11)	$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	120.7(8)
$\mathrm{P}(1)-\mathrm{C}(26)-\mathrm{C}(27)$	$115.9(7)$	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}\left(27^{\prime}\right)$	110.9(10)

[^1]and the imino-carbon atom deviate in opposite directions by 16.1 and 14.1 pm , respectively. The cyclohexyl substituent adopts a chair conformation [r.m.s. deviation of plane $\mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(5), \mathrm{C}(6) 0.5 \mathrm{pm}$, displacements of $C(1)$ and $C(4)+65.1$ and -63.5 pm , respectively]. The two phenyl rings are planar (r.m.s. deviations 0.3 and 1.0 pm) and mutually inclined at 71°. Torsion angles in the butane chain are - 175 and (necessarily) 180°.

The two chloroform molecules per asymmetric unit are weakly hydrogen-bonded to the coordinated chlorine $[\mathrm{Cl}(1) \cdots \mathrm{C} 249.6$ and $252.5 \mathrm{pm}, \mathrm{Cl}(1) \cdots \mathrm{H} 260$ and 258 pm] from opposite directions ($\mathrm{H} \cdots \mathrm{H} 499$ pm), in a fairly symmetric and coplanar (with palladium) manner.

2.2. Cyclometallated diphosphine compounds

Treatment of N-(2,4 -dimethylbenzylidene)cyclohexylamine (a) or of N-(2,3-dimethoxybenzylidene)cyclohexylamine (b) with palladium(II) acetate in boiling glacial acetic acid gave the corresponding cyclometallated acetato-bridged palladium(II) dimer complexes (1a, 1b) as air-stable solids. These were converted into
the chloro-bridged ($\mathbf{2 a}, \mathbf{2 b}$), bromo-bridged ($\mathbf{3 a}, \mathbf{3 b}$) and iodo-bridged complexes (4a, 4b), respectively, as airstable solids (see Experimental and Tables 3 and 4), by treatment of $\mathbf{1 a}$ or 1b in acetone with aqueous sodium chloride, sodium bromide or sodium iodide. They were fully characterised by elemental analysis ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) and by IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy. These compounds have the characteristic properties of some analogous compounds reported by us [5,20]. Thus, coordination of the metal through the nitrogen lone pair of the $\mathrm{C}=\mathrm{N}$ moiety is confirmed by the shift of the $\nu(\mathrm{C}=\mathrm{N})$ frequency towards lower wavenumbers in the IR spectrum [21] and by the shift of the $H \mathrm{C}=\mathrm{N}$ resonance towards lower frequency in the ${ }^{1} \mathrm{H}$ NMR spectrum [22]. In complexes 1a and 1b the separation of the asymmetric and symmetric stretching modes of the acetate groups is consistent with bridging acetate ligands [23]. The ${ }^{1} \mathrm{H}$ NMR spectra allowed unequivocal assignment of the phenyl ring protons, confirming palladation of the ligand.

Reaction of the halide-bridged complexes 2a-4a or $\mathbf{2 b}-\mathbf{4 b}$ with trans- $\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ (trans-dppe) or with $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}(\mathrm{dppb})$ in a dimer/diphosphine

TABLE 3. Microanalytical, colour, yield and IR data

	Colour	Yield (\%)	Analytical data (Found (calc.) (\%))			IR data (cm^{-1})		
			C	H	N	$\nu(\mathrm{C}=\mathrm{N})^{\text {a }}$	$\nu(\mathrm{Pd}-\mathrm{Cl})_{\mathrm{b}}$	$\nu(\mathrm{Pd}-\mathrm{Cl})_{\mathrm{t}}$
$1 \mathrm{a}^{\text {b }}$	Yellow	40	53.6 (53.8)	6.2 (6.1)	3.7 (3.7)	1600sh,s		
2a	White	80	51.1 (51.6)	5.7 (5.7)	3.8 (3.8)	1602m	$\begin{aligned} & 298 \mathrm{~m} \\ & 250 \mathrm{~m} \end{aligned}$	
$3 a^{\text {c }}$	Yellow	85	43.4 (43.4)	4.3 (4.8)	3.0 (3.3)	1606s		
$4 a^{\text {c }}$	Yellow	90	37.6 (38.0)	4.5 (4.3)	2.9 (2.9)	1610 m		
5a	White	77	60.1 (60.7)	6.0 (6.0)	2.3 (2.5)	1618m		275m
$69^{\text {c }}$	Pale yellow	81	54.3 (54.7)	5.1 (5.1)	2.0 (2.3)	1610 m		
7 a	Yellow	70	52.4 (52.1)	4.9 (4.8)	2.4 (2.2)	1610 m		
8 a	White	80	61.9 (61.2)	6.1 (6.0)	2.7 (2.5)	1614m		288m
9 a	White	70	56.7 (56.7)	5.5 (5.6)	2.0 (2.3)	1612m		
10a	Yellow	66	52.5 (52.7)	5.2 (5.2)	1.9 (2.1)	1618 m		
11a	White	90	56.8 (57.1)	4.9 (4.9)	1.6 (1.6)	1600 m		
12a	Yellow	80	58.3 (57.9)	5.4 (5.4)	1.5 (1.5)	1608m		
1b ${ }^{\text {b,c }}$	Yellow	50	46.3 (46.3)	5.3 (5.3)	3.1 (3.4)	1598sh,m		
$2 b^{\text {c }}$	Yellow	80	47.7 (47.5)	5.6 (5.6)	3.8 (3.4)	1597m	$\begin{aligned} & 287 \mathrm{~m} \\ & 270 \mathrm{~m} \end{aligned}$	
$3 b^{\text {c }}$	Yellow	70	42.5 (42.9)	5.6 (5.0)	3.2 (3.0)	1600s		
$4 b^{\text {c }}$	Yellow	85	35.6 (35.6)	4.0 (4.0)	2.8 (2.7)	1610s		
5b	White	80	54.6 (54.4)	5.5 (5.1)	2.4 (2.2)	1620m		275m
6 b	White	90	53.1 (53.3)	4.9 (4.9)	2.2 (2.2)	1618m		
7b	Pale yellow	78	49.5 (49.6)	4.6 (4.6)	2.2 (2.1)	1616 m		
8 b	Yellow	70	58.0 (58.0)	6.1 (5.7)	2.4 (2.3)	1618m		295m
9 b	Pale yellow	73	53.3 (53.9)	5.3 (5.3)	2.3 (2.2)	1618s		
$10{ }^{\text {c }}$	Orange	88	51.9 (51.2)	5.8 (5.4)	2.2 (1.9)	1612m		
11b	Yellow	95	55.2 (55.1)	4.7 (4.7)	1.7 (1.6)	1609m		
12b	Yellow	80	55.8 (55.9)	5.1 (5.2)	1.4 (1.5)	1610 m		

a $\nu(\mathrm{C}=\mathrm{N})$ values for a $1634 \mathrm{~s} ; b 1630 \mathrm{~s}\left(\mathrm{~cm}^{-1}\right){ }^{\mathrm{b}} \nu(\mathrm{COO})$ values for $1 \mathrm{a}: \nu_{a s}(\mathrm{COO}) 1570 \mathrm{~s}, \nu_{s}(\mathrm{COO}) 1408 \mathrm{~s} ; 1 \mathrm{~b}: \nu_{a s}(\mathrm{COO}) 1575 \mathrm{~s}, \nu_{s}(\mathrm{COO}) 1410 \mathrm{~s}$ $\left(\mathrm{cm}^{-1}\right)$. ${ }^{\mathrm{c}}$ Obtained as solvates: $\mathbf{3 a}, 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 4 \mathbf{a}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 6 \mathbf{a}, 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathbf{1 b}, \mathbf{M e C O M e} ; \mathbf{2 b}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathbf{3 b}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 4 b, 2 \mathrm{MeCOMe} ; \mathbf{1 0 b}$, 2 MeCOMe .

TABLE 4. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}{ }^{\text {a }}$ and ${ }^{1} \mathrm{H}{ }^{\mathrm{b}}$ NMR data ${ }^{\mathrm{c}, \mathrm{d}}$

	$\delta(\mathrm{HC}=\mathrm{N})$	$\delta[\mathrm{H}(3)]$	$8[H(5)]$	$\delta(\mathrm{MeO})$	δ (Me)	$\delta(\mathrm{P})$
$a^{\text {e }}$	8.58s	6.97s	7.02d		2.45s	
					2.32s	
$1 a^{\text {f }}$	7.37s	6.52s	6.71s		2.23s	
					2.18s	
2 a	8.00 s	6.59s	7.05s		2.3 s	
					2.26s	
3a	8.05s	6.59s	7.23s		2.37s	
					2.26 s	
4a	8.16s	6.61s	7.48s		$\begin{aligned} & 2.38 \mathrm{~s} \\ & 2.25 \mathrm{~s} \end{aligned}$	
$5 a^{8 j}$	8.32d	6.42s	$\begin{aligned} & 5.99 \mathrm{~d} \\ & { }^{4} J[\mathrm{PH}(5)]=6.2 \end{aligned}$		2.38 s	32.28s
	${ }^{4} \mathrm{~J}(\mathrm{PH})=7.8$				1.61s	
$6 a^{\mathrm{g}} \mathrm{j}$	8.33 d	6.42s	5.99b		2.38s	32.71s
	${ }^{4} J(\mathrm{PH})=7.9$				1.61 s	
7a ${ }^{\text {ej }}$	8.37 d	6.42 s	5.97 b		2.37 s	33.30 s
	${ }^{4} J(\mathrm{PH})=8.1$				1.61s	
$8 a^{8}$	$8.25 d$	6.42s	5.96 b		2.37 s	30.97s
	${ }^{4} J(\mathrm{PH})=8.0$				1.64 s	
$9 a^{8}$	8.32 d	6.42s	$\begin{aligned} & 5.93 \mathrm{~d} \\ & { }^{4} J[\mathrm{PH}(5)]=7.6 \end{aligned}$		2.37 s	31.33 s
	${ }^{4} J(\mathrm{PH})=8.1$				1.63 s	
10a ${ }^{\text {g }}$	8.37 d	6.42s	$\begin{aligned} & 5.87 \mathrm{~d} \\ & { }^{4}[\mathrm{PH}(5)]=7.4 \end{aligned}$		2.38 s	32.33s
	${ }^{4} \mathrm{~J}(\mathrm{PH})=7.9$				1.65s	
119 ${ }^{\text {g,k }}$	8.54d	6.63 s	$\begin{aligned} & 6.56 \mathrm{t} \\ & { }^{4} \mathrm{f}[\mathrm{PH}(5)]=7.2 \end{aligned}$		2.44 s	$57.90 \mathrm{~d}\left(\mathrm{P}_{\mathrm{A}}\right)$
	${ }^{4} \mathrm{~J}(\mathrm{PH})=8.8$				1.87s	48.02d (P_{B})
12a ${ }^{\text {a }}$	$8.37 \mathrm{~d}$	6.51 s	$\begin{aligned} & 6.29 \mathrm{t} \\ & { }^{4} J[\mathrm{PH}(5)]=7.6 \end{aligned}$		2.37 s	$37.45 \mathrm{~d}\left(\mathrm{P}_{\mathrm{A}}\right)$
	${ }^{4} J(\mathrm{PH})=8.1$				1.69 s	$12.49 \mathrm{~d}\left(\mathrm{P}_{\mathrm{B}}\right)$

$\delta[H(4)]$					
$b^{\text {b }}$	8.665	6.94 dd	7.03t	3.87s	
		${ }^{3} \mathrm{~J}[\mathrm{H}(4) \mathrm{H}(5)]=7.8$		3.86s	
$1 b^{\text {i }}$	7.63s	6.65d	6.68d	3.78s	
		${ }^{3} \mathrm{~J}[\mathrm{H}(4) \mathrm{H}(5)]=8.1$		3.80 s	
2b	8.11s	6.68 d	6.99 d	3.88s	
		${ }^{3} \mathrm{~J}[\mathrm{H}(4) \mathrm{H}(5)]=8.2$		3.80s	
3b	8.17s	6.66d	7.17d	3.88s	
		${ }^{3} \mathrm{~J}[\mathrm{H}(4) \mathrm{H}(5)]=8.5$		3.80 s	
4b	8.26s	6.63 d	7.40 d	3.87s	
		${ }^{3} \mathrm{~J}[\mathrm{H}(4) \mathrm{H}(5)]=8.5$		3.79s	
5b ${ }^{\mathbf{j}}$	8.44d	6.13d	5.96 dd	3.86 s	33.18s
	${ }^{4} J(\mathrm{PH})=8.4$	${ }^{3} \mathrm{~J}[\mathrm{H}(4) \mathrm{H}(5)]=8.4$	${ }^{4} J[\mathrm{PH}(5)]=6.2$	3.60s	
$6 b^{j}$	8.47 d	6.15d	5.96 dd	3.85s	33.50s
	${ }^{4} J(\mathrm{PH})=8.2$	${ }^{3} \mathrm{~J}[\mathrm{H}(4) \mathrm{H}(5)]=8.3$	${ }^{4} J[\mathrm{PH}(5)]=6.3$	3.60 s	
$7{ }^{\text {j }}$	8.51d	6.15 d	5.92 d	3.84s	28.38 s
	${ }^{4} J(\mathrm{PH})=7.2$	${ }^{3} J[\mathrm{H}(4) \mathrm{H}(5)]=8.4$	${ }^{4} J[\mathrm{PH}(5)]=6.6$	3.60 s	
8b	$8.41 \mathrm{~d}$	$6.18 \mathrm{~d}$	$5.96 \mathrm{dd}$	3.84s	31.0ós
	${ }^{4} J(\mathrm{PH})=8.4$	${ }^{3} \mathrm{~J}[\mathrm{H}(4) \mathrm{H}(5)]=8.4$	${ }^{4} J[\mathrm{PH}(5)]=6.0$	3.63s	
9b	8.43d	6.18d	5.93 dd	3.81s	33.83s
	${ }^{4} J(\mathrm{PH})=8.5$	${ }^{3} J[\mathrm{H}(4) \mathrm{H}(5)]=8.4$	${ }^{4} J[\mathrm{PH}(5)]=6.1$	3.63s	
10b	8.41 d	6.18 d	5.90 m	3.83s	32.84s
	${ }^{4} J(\mathrm{PH})=7.1$	${ }^{3} \mathrm{~J}[\mathrm{H}(4) \mathrm{H}(5)]=8.4$	${ }^{4} J[\mathrm{PH}(5)]=7.3$	3.63s	
$11 b^{k}$	$8.63 \mathrm{~d}$	6.53 m	6.53 m	3.90 s	$58.99 \mathrm{~d}\left(\mathrm{P}_{\mathrm{A}}\right)$
	${ }^{4} J(\mathrm{PH})=8.0$			3.72s	$49.70 \mathrm{~d}\left(\mathrm{P}_{\mathrm{B}}\right)$
12b ${ }^{\text {k }}$	$8.63 \mathrm{~d}$	6.25 m	6.25 m	$3.90 \mathrm{~s}$	$38.46 \mathrm{~d}\left(\mathrm{P}_{\mathrm{A}}\right)$
	${ }^{4} J(\mathrm{PH})=8.6$			3.72 s	$14.18 \mathrm{~d}\left(\mathrm{P}_{\mathrm{B}}\right)$

[^2]$1 / 1$ molar ratio gave the dinuclear species $5 \mathbf{a}-7 \mathbf{a}$ and $5 b-7 b$ and 8a-10a and $8 \mathrm{~b}-10 \mathrm{~b}$, respectively (see Experimental and Tables 3 and 4). The C(4)-Me resonance in complexes derived from ligand a is shifted towards lower frequency by $c a .0 .8 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum as compared to the parent halidebridged dimer, due to shielding effects of the phosphine phenyl ring [24], showing that the phosphorus atom is trans to the nitrogen atom. Also, the $H \mathrm{C}=\mathrm{N}$ resonance is coupled to the ${ }^{31} \mathrm{P}$ nucleus [${ }^{4} \mathrm{~J}(\mathrm{PH}) \mathrm{ca} .8$ $\mathrm{ppm}]$; in a trans- $\mathrm{C}-\mathrm{Pd}-\mathrm{P}$ geometry the $H \mathrm{C}=\mathrm{N}$ resonance is not coupled to the ${ }^{31} \mathrm{P}$ nucleus [10] (vide infra). There is only one set of resonances for each cyclopalladated moiety in the ${ }^{1} \mathrm{H}$ NMR spectrum and only one singlet is observed for the two ${ }^{31} \mathrm{P}$ nuclei in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum; this indicates that the compounds are centrosymmetric, as proved for 8a by X-ray crystal structure determination (vide supra).

Reaction of the halide-bridged dimer complexes 2a$\mathbf{4 a}$ or $\mathbf{2 b} \mathbf{- 4 b}$ with cis-dppe or with dppb, in a dimer/diphosphine $1 / 2$ molar ratio, and $\mathrm{NH}_{4} \mathrm{PF}_{6}$, gave mononuclear five- (11a, 11b) and seven-membered-ring (11b, 12b) cyclometallated species (see Experimental and Tables 3 and 4). The final products are the same whichever halide dimer is used in the reaction, as the halogen is exchanged by the hexafluorophosphate ion. For compounds derived from trans-dppe the apparent triplet at ca. 6.9-6.7 ppm is assigned to the $\mathrm{PCH}=$ CHP resonances ($\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system) with N values ca. 42 Hz . The ${ }^{31} \mathrm{P}$ NMR spectrum shows two doublets for the two inequivalent phosphorus nuclei. The assignment of the doublets was made on the assumption that a ligand of greater trans-influence shifts the ${ }^{31} \mathrm{P}$ resonance of the phosphorus nuclei trans to it to lower frequency [25]. This was confirmed by selective decoupling experiments of the phosphorus atoms. The $H \mathrm{C}=\mathrm{N}$ resonance (doublet) arises from coupling to only one phosphorus nucleus [${ }^{4} J(\mathrm{PH})$ ca. 7.5 Hz], presumably that trans to it. Selective irradiation reduces the $\mathrm{H}(5)$ resonance to a doublet $\left[{ }^{4} J(\mathrm{PH}) c a .7 .5 \mathrm{~Hz}\right]$ and the $H \mathrm{C}=\mathrm{N}$ resonance to a singlet (irradiating at P_{A}) or to a doublet (irradiating at P_{B}). The $\mathrm{PCH}=\mathrm{CHP}$ proton resonances were not assigned. They are probably shifted to higher frequency due to shielding effects of the phosphine phenyl rings and hidden by the phenyl proton resonances.

3. Experimental details

The general procedures and apparatus used were the same as described previously [9]. The preparations of the Schiff base ligands and of the acetato- (1a, 1b), chloro- ($2 \mathbf{a}, \mathbf{2 b}$), bromo- (3a, 3b) and iodo-bridged (4a, 4b) complexes were performed as reported for similar
compounds [5,11]. The diphosphines trans-dppe and cis-dppe were prepared following the literature procedure [26] using the appropriate dichloride, trans$\mathrm{ClCH}=\mathrm{CHCl}$ or cis- $\mathrm{ClCH}=\mathrm{CHCl}$; dppb was purchased from Aldrich Chemie.

3.1. Preparation of $\left[\left\{\overline{\left.\mathrm{Pd}\left[2,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{H})=\mathrm{N} C y\right]\right\}_{2}-}\right.\right.$ (μ-trans- $\left.\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)\left(\mathrm{Cl}_{2}{ }_{2}\right.$ (5a)

trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}(0.028 \mathrm{~g}, 0.07 \mathrm{mmol})$ was added to a suspension of the chloro-bridged dimer 2a ($0.05 \mathrm{~g}, 0.07 \mathrm{mmol}$) in acetone ($c a .5 \mathrm{~cm}^{3}$). The mixture became clear upon stirring. After 2 h the product precipitated out, was filtered off and dried in vacuo. Recrystallisation from dichloromethane/hexane gave the desired product as a white solid.

Complexes $\mathbf{6 a - 1 0 a}$ and $\mathbf{5 b} \mathbf{- 1 0 b}$ were prepared similarly. Compounds 1b, 4b and 10b were recrystallised from acetone/n-hexane.
3.2. Preparation of $\left[\left\{\mathrm{Pd}\left[2,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right]\right\}\right.$ (cis$\left.\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right) / \mathrm{PF} \mathrm{F}_{6}$ (11a)
cis $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}(0.028 \mathrm{~g}, 0.07 \mathrm{mmol})$ was added to a suspension of the chloro-bridged dimer 2a ($0.025 \mathrm{~g}, 0.035 \mathrm{mmol}$) in acetone ($a .5 \mathrm{~cm}^{3}$). The resulting mixture was stirred for 1 h at room temperature after which $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.011 \mathrm{~g}, 0.07 \mathrm{mmol})$ was added. The complex was then precipitated out by addition of water, filtered off, and dried in vacuo. Recrystallisation from dichloromethane/hexane gave the final compound as a white solid. Compounds 12a, 11b and $\mathbf{1 2 b}$ were prepared similarly.

3.3. Single-crystal X-ray diffraction analysis

Three-dimensional, room temperature X-ray data were collected in the range $3.5<2 \theta<50^{\circ}$ on a Nicolet R3 4-circle diffractometer by the $\omega-2 \theta$ scan method. The 3970 independent reflections (of 6907 measured) for which $|F| / \sigma(F)>3.0$ were corrected for Lorentz and polarisation effects, and for absorption by analysis of 10 azimuthal scans (minimum and maximum transmission coefficients 0.654 and 0.686). The structure was solved by Patterson and Fourier techniques and refined by blocked cascade least squares methods. Hy drogen atoms were included in calculated positions and refined in riding mode with isotropic thermal parameters related to those of the supporting atom. Refinement converged at a final $R 0.0731$ ($R_{w} 0.0602$, 370 parameters, mean and maximum shift/e.s.d. 0.019 and 0.079 respectively), with allowance for the thermal anisotropy of all non-hydrogen atoms. A final difference electron density synthesis showed peaks of -83 and +79 e \AA^{-3}. Complcx scattering factors were taken from ref. 27 and from the program package shelxtl [28], as implemented on the Data General DG30 com-
puter, which was used for structure solution and refinement. A weighting scheme $w^{-1}=\left[\sigma^{2}(F)+\right.$ $0.00030(F)^{2}$] was used in the latter stages of the refinement. Table 1 lists atomic positional parameters with estimated standard deviations.

3.3.1. Crystal data
 $\mathrm{p}\left[\left(\mathrm{Pd}\left[2,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{H})=\mathrm{NCy}\right]\right]_{2}(\mathrm{Cl})_{2}\left(\mu-\mathrm{Ph}_{2}-\right.\right.$

$\left.\left.\mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right)\right] \cdot 4 \mathrm{CHCl}_{3}, \mathrm{C}_{62} \mathrm{H}_{72} \mathrm{Cl}_{14} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2} ; \quad M=$ 1616.35 (includes solvent molecules); crystallises from chloroform as yellow, elongated blocks; crystal dimensions $0.45 \times 0.20 \times 0.15 \mathrm{~mm}$. Monoclinic, $a=1084.1(7)$, $b=3067.7(28), c=1181.9(10) \mathrm{pm}, \beta=114.22(6)^{\circ}, U=$ $3.585(5) \mathrm{nm}^{3} ; D_{\mathrm{c}}=1.497 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2$. Space group $P 2_{1} / n$, graphite-monochromated (Mo $\mathrm{K} \alpha$) radiation, $\lambda=71.069 \mathrm{pm}, \mu(\mathrm{Mo} K \alpha)=11.03 \mathrm{~cm}^{-1}, \quad F(000)=$ $1635.89 \mathrm{~cm}^{-1}$.

Tables of structure factors, hydrogen-atom coordinates, etc., are available from the authors.

Acknowledgment

We wish to thank the Xunta de Galicia (Spain) for a grant to A.F.

References

1 E. C. Constable, Polyhedron, 3 (1984) 1037.
2 I. Omae, Organometallic Intramolecular-coordination Compounds, Elsevier, Amsterdam, 1986.
3 V. V. Dunina, O. A. Zalevskaya and V. M. Potapov, Russ. Chem. Rev., 57 (1988) 250.
4 A. D. Ryabov, Chem. Rev., 90 (1990) 403.
5 M. T. Pereira, J. M. Vila, A. Suarez, E. Gayoso and M. Gayoso, Gazz. Chim. Ital., 118 (1988) 783.
6 J. M. Vila, M. Gayoso, M. T. Pereira, A. Romar, J. J. Fernandez and M. Thornton-Pett, J. Organomet. Chem., 401 (1991) 385.

7 A. Suarez, J. M. Vila, M. T. Pereira, E. Gayoso and M. Gayoso, J. Organomet. Chem., 335 (1987) 359.

8 J. L. Casas, E. Gayoso, J. M. Vila, M. T. Pereira and M. Gayoso, Synth. React. Inorg. Met.-Org. Chem., 21 (1991) 263.
9 J. M. Vila, M. Gayoso, M. T. Pereira, M. C. Rodriguez, J. M. Ortigueira and M. Thornton-Pett, J. Organomet. Chem., 426 (1992) 267.

10 J. M. Vila, M. Gayoso, J. J. Fernandez, J. M. Ortigueira and A. Suarez, Polyhedrom, 9 (1990) 2741.
11 J. M. Vila, J. M. Ortigueira, M. Gayoso, A. Castineiras, W. Hiller and J. Strahle, Inorg. Chim. Acta, 179 (1991) 171.
12 J. Dehand, M. Pfeffer and M. Zinsius, Inorg. Chim. Acta, 13 (1975) 229.

13 L. Pauling, The Nature of the Chemical Bond, Cornell University Press, New York, 3rd edn., 1960.
14 J. Selbin, K. Abboud, S. F. Watkins, M. A. Gutierrez and F. R. Fronczek, J. Organomet. Chem., 241 (1983) 259.
15 H. B. Burgi and J. D. Dunitz, Helv. Chim. Acta, 53 (1970) 1747.
16 J. Granell, D. Sainz, J. Sales and X. Solans, J. Chem. Soc., Dalton Trans., (1986) 1785.
17 J. Albert, J. Granell, J. Sales, X. Solans and M. Font-Altaba, Organometallics, 5 (1986) 2567.
18 L. L. Martin and R. A. Jacobson, Inorg. Chem., 10, (1971) 1795.
19 D. L. Weaver, Inorg. Chem., 9 (1970) 2255.
20 M. T. Pereira, J. M. Vila, E. Gayoso, W. Hiller, J. Strahle and M. Gayoso, J. Coord. Chem., 18 (1988) 245.
21 H. Onoue and I. Moritani, J. Organomet. Chem., 43 (1972) 431.
22 Y. A. Ustinyuk, V. A. Chertov and J. V. Barinov, J. Organomet. Chem., 29 (1971) C53.
23 K. Nakamoto, IR and Raman Spectra of Inorganic and Coordination Compounds, Wiley-Interscience, New York, 4th edn., 1986.
24 J. M. Vila, A. Suarez, M. T. Pereira, E. Gayoso and M. Gayoso, Polyhedron, 6 (1987) 1003 and references therein.
25 P. S. Pregosin and R. W. Kuntz, ${ }^{34} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR of Transition Metal Phosphine Complexes, in P. Diehl, E. Fluck and R. Kosfeld (eds), NMR 16 Springer, Berlin 1979.
26 W. Hewertson and H. R. Watson, J. Chem. Soc., (1962) 1490.
27 International Tables for X-ray Crystallography, Vol. 4, Kynoch Press, Birmingham, 1974.
28 G. M. Sheldrick, shelxth, An integrated system for solving, refining and displaying crystal structures from diffraction data (Revision 5.1), University of Göttingen, Germany, 1985.

[^0]: Correspondence to: Professor J.M. Vila.

[^1]: ${ }^{\text {a }}$ Primed atoms are related by the symmetry operator ($1-x,-y$, $1-z$).

[^2]: ${ }^{\text {a }}$ Spectra measured at $100.6 \mathrm{MHz}\left(c a . \pm 20^{\circ} \mathrm{C}\right.$); chemical shifts (δ) in ppm (± 0.1) to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}{ }_{4}{ }^{\text {b }}$ Spectra measured at 250 MHz ($c a . \pm 20^{\circ} \mathrm{C}$); chemical shifts (δ) in ppm (± 0.01) to high frequency of SiMe_{4}. ${ }^{\text {c }}$ Coupling constants in Hz . ${ }^{\mathrm{d}} \mathrm{s}$, singlet; d, doublet; dd, doublet of doublets; t , triplet; m, multiplet; b , broad. ${ }^{\mathrm{e}} \delta(\mathrm{H} 6)=7.76 \mathrm{~d},{ }^{3} \mathrm{~J}[\mathrm{H}(5) \mathrm{H}(6)]=7.8 .{ }^{\mathrm{f}} \delta\left(\mathrm{O}_{2} \mathrm{CMe}\right)=2.13 \mathrm{~s}$. ${ }^{\mathrm{g}}$. The lower $\delta(\mathrm{Me})$ value is for the $\mathrm{C}(4)$-Me group. ${ }^{\mathrm{h}} \delta(\mathrm{H} 6)=7.54 \mathrm{dd},{ }^{3} J[\mathrm{H}(5) \mathrm{H}(6)]=8.1,{ }^{4} J[\mathrm{H}(5) \mathrm{H}(6)]=1.5 .^{\mathrm{i}} \delta\left(\mathrm{O}_{2} \mathrm{CMe}\right)=2.11 \mathrm{~s} .{ }^{\mathrm{j}} \delta[\mathrm{PC}(H)=\mathrm{C}(H) \mathrm{P}]$ values for: $5 \mathrm{a}, \delta 6.96 ; 6 \mathrm{a}$, $\delta 6.84 ; 7 \mathrm{a}, \delta 6.82 ; 5 \mathrm{~b}, \delta 6.80 ; 6 \mathrm{~b}, \delta 6.62 ; 7 \mathrm{~b}, \delta 6.66 \mathrm{ppm} . N$ values are ca. $42 \mathrm{~Hz} .{ }^{\mathbf{k}}$ Coupling constants: $11 \mathrm{a},{ }^{3} J(\mathrm{PP})=49.6 ; 12 \mathrm{a},{ }^{5} J(\mathrm{PP})=48.1 ; 11 \mathrm{~b}$, ${ }^{3} J(\mathrm{PP})=52.9 ; 12 \mathrm{~b},{ }^{5} J(\mathrm{PP})=45.7 \mathrm{~Hz}$.

